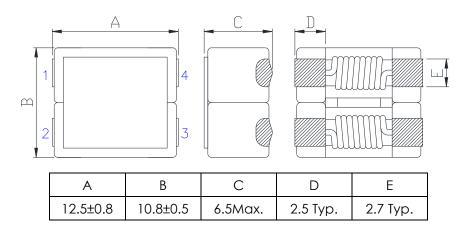
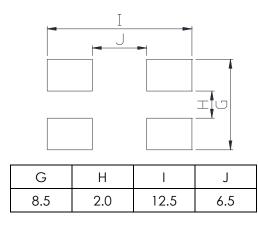


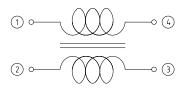
CME-PCF121065V-SERIES

Features


- ▶ Due to the low profile design, it is suitable for surface mount.
- ► High impedance characteristic has been achieved a superior effect for common mode noise suppression.
- ► Have achieved miniaturization while keeping characteristics by adoption of exclusive square type closed magnetic cores.


Applications

▶ For DC power lines (Electronics control equipment, multi-media etc).


Dimension (Unit:mm)

Recommended Land Pattern

Circuit Diagram

- You can also contact us by e-mail: coilmaster@coilmaster.com
- All specifications are subject to change without notice.
- Update date: 2023.05.03

Regulation of part number

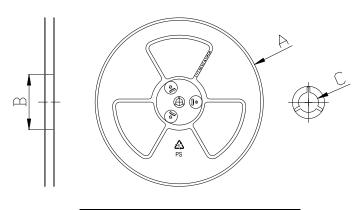
CMI	-	PCF	121065	٧	-	231	T
1)		2	(3)	(4)	="	(5)	6

- CoilMaster's initial
- 2) Series Name: Power line Common mode Filter
- 3 Size (unit:mm)
- 4 Type
- (5) Typical impedance value (230 ohm)
- 6 Packing type (Taping)

Specifications

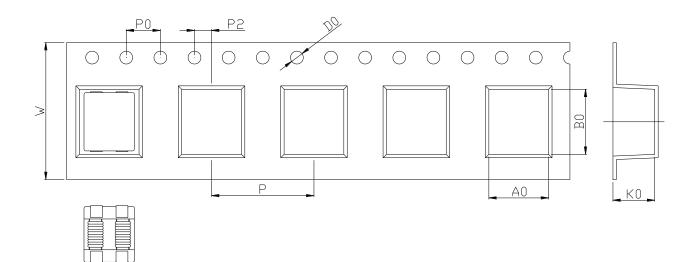
Impedance (Ohm) Typ.(Min.)	DCR (mohm) Max.	Rated Current (A) Max.	Insulation resistance (MΩ)Min.	Rated voltage (Vdc) Max.	Test Frequency (Hz)
230(170)	2.5	9.8	10	100	100M
700(500)	7.5	7.8	10	100	100M
1000(750)	15.5	5.8	10	100	100M
	(Ohm) Typ.(Min.) 230(170) 700(500)	(Ohm) (mohm) Typ.(Min.) Max. 230(170) 2.5 700(500) 7.5	(Ohm) (mohm) Current (A) Max. 230(170) 2.5 9.8 700(500) 7.5 7.8	(Ohm) Typ.(Min.) (mohm) Max. Current (A) Max. resistance (MΩ)Min. 230(170) 2.5 9.8 10 700(500) 7.5 7.8 10	(Ohm) Typ.(Min.) (mohm) Max. Current (A) Max. resistance (MΩ)Min. voltage (Vdc) Max. 230(170) 2.5 9.8 10 100 700(500) 7.5 7.8 10 100

- The Rated current: The DC current at which the temperature rise is △t=40 °c(approximately)
- Operating Temperature Range(including self temperature) : -40°c ~ +125°c


Note 1: Circuit design, component placement, PCB trace size and thickness, airflow and other cooling. Provision all affect the part Temperature. Part temperature should be verified in the end application.

- You can also contact us by e-mail: coilmaster@coilmaster.com
- All specifications are subject to change without notice.
- Update date: 2023.05.03

Packaging


(1) Package quantity: 500 (pcs/reel)

(2) Reel Dimensions (unit:mm)

Α	В	С		
330	100	13		

(3) Tape Dimensions

W	A0	ВО	KO	Р	P0	P2	D0
16.0	12.6	13.3	6.8	16.0	4.0	2.0	1.5

Korea Sales Office (KOREA)

+82)31-904-1444

H.K Sales Office (HONGKONG) +852)2711-5551

China Sales Office (CHINA) Hungary Sales office (EUROPE) +36) 1-404-5832

+86)0758-683-1444

LA Sales Office (USA)

+1)714-616-6989

• You can also contact us by e-mail: coilmaster@coilmaster.com

- All specifications are subject to change without notice.
- Update date: 2023.05.03